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Summary 
D

There has been increased interest recently in feed-back methods for reliable, robust,
efficient computational methods in mechanics. We will outline the construction of
such methods for a class of problems describing special (anti-plane shear) deforma-

tions of bars of rectangular or arched cross section. In particular, we will show how
l to reduce the dimension of the underlying problem "adaptively". For brittle or linear

materials, this method is adaptive (optimal in rate of convergence).
We shall emphasize the computational aspects that have practical import to the

performance of this method, such as the construction of a posteriori error estimators
that are simple to compute, the selection of basis functions in the dimensional reduc-
tion and the heuristic principle for extension. We will illustrate these concepts with
computations. /' /f / ___

1. Introduction

Since the dawn of structural mechanics, the scientific and engineering community has
pursued the idea of replacing a full system of equations governing the behaviour of
"thin" structures by ones posed over their mid surface. We roughly categorize these
as follows:

" a physical modelling approach where one uses a priori physical assumptions
along with appropriate variational principles to arrive at the dimensionally re-
duced equations. See 1161 for a survey.

* an asymptotic expansion approach. Based on -first- formal asymptotic expan-
sion in a parameter measuring the "thin" dimension, one identifies dimension-
ally reduced equations - often "justifying" those arrived at above by proving
convergence as this "thin" parameter tends to zero - under sometimes very
restrictive assumptions. See (41 for a survey.

" an energyasymptotic approach, which is the one we will pursue here. the basic S
idea is to find a minimizer UN of the given energy functional in a proper (but c b i
still of infinite dimension) subspace VN which is characterized by some basis
functions {Oj'}o: (."

V N= ({V'ocjg)1Pj(x./d(J)))
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Figure 1: Arch cross section of bar.

Here we assume that the midsurface is parametrized by the equation x,, = 0
and that the thickness of the domain is d(x'). Thus the model of order N of
reduced dimension was introduced. In 161 the choice of was made to
yield optimal rates of convergence as d 1 0 and as by-product also as N - oo.
This approach goes back at least as far as to Poniatovskii, 1151, and Kantorovich,
1121.

Undoubtedly, other relevant categorizations may be thought of. If one uses piecewise
polynomials for Obi and discretizes the Galerkin equations posed over VN fully by a
Galerkin finite element method, again using piecewise polynomials, we may identify
the resulting discretization as one of an anisotropic p version using a tensorial basis
split along the "thin" direction. We will remain free to choose a full discretization,
however. For one dimension there exist robust nonlinear boundary value problem
solvers. In addition, the coefficient terms c, do not coincide with the terms in the
formal asymptotic expansion or the reduced solution in the first approach above.

In an earlier paper [61, the method of dimensional reduction for quasilinear bound-
ary value problems was introduced. It was observed that the coefficient functions ci
were concentrated at boundary and interior layers for large j/d. A generalization was
proposed which allows for the possibility of different order of dimensionally reduced
models in different parts of the underlying domain.

We shall confine our study to the class of problems describing special (anti-plate
shear) deformations of bars of rectangular or arched cross section. In fig. 1 we depict
an arched cross, section with the midsurface being described by the equation - in
polar coordinates

rmid : r = ro(O); 0 E (O,w)

The reference configuration for the infinite bar then has a cross section

n, = ((rO): r E o(0) + (-d(O),+d(O)); 0 E (0,w)

We briefly derive the governing equations. During an anti-plane shear a prism with
generators parallel to X3 axis undergo the deformation (xl,x 2,Z3 ) -4 (x1 ,X2 ,x3 +
U(Xz,X 2)) with a deformation gradient

1 0 0
f=[o o

at, 8I i3, s 1
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and the left Cauchy-Green strain tensor: B = ffT. For a neo-Hookean, hypere-
lastic material - i.e. nonlinearly elastic, homogeneous, isotropic and incompressible
material - the strain energy is given by W(traceB) = W(3 + IVUI2) which in turn
determines the Piola-Kirchhoff stress tensor: S = _pf-T + 2W'(traceB)f up to ar-
bitrary pressure p so that S1 = S22 = S3 = 2W'(traceB) - p, S12 = S21 = 0, and

= 2W'(traceB) -, S2= 2W'(traceB) From the equilibrium equations:

3 a S

j=1 3

follows fla(2W'(3 + IVU 2)a + a (2W'(3 + IVUI 2) = const.
dX1 X2 =

Identifying F(IVUI2 ) with 2W'(3 + IVUI 2), the equations are then,

divF(IVUI2)VU = g

with zero displacements prescribed along 0 = 0 and 0 = w and traction 3(O)d pre-
scribed along r+ = (0,w) x ro + d and r+ = (0, w) x ro - d. F is constitutively given
and we take simple power laws:

F(t) = 1 + t', for some n E N,Vt > 0 (1.1)

Introduce the scaling
r - ro(O) ; (-I,

d(O)

Let u(p, 0) = U(i). Then we relist the equation for the linear case F = 1:

r2 AU = 1.[(ro + dp)' + (r' + d'p)Ju,,,

(o + dp) - (rro + dpj + 1(ro + d'p)d'l}u, (1.2)

d(ro + d'p)u,# + us,,)

= (ro + dp)2 f

For n > 1, the algebra becomes more cumbersome but manageable.

Since we use a Galerkin approach we put this into a variational form. Let w = 1.
Find u E V such that

Vv E V, Au(v) = G(v) (1.3)
where

Au(v) =- J. F(I Vdu I2) Vzu. Vdv d dO dp (1.4)

G(v) =df f(0))i(1,o)(1 + d) - v(-1,O)(1 - d)) dO (1.5)

n =1o,1[×1]- 1, 11 (1.6)

r0 =((o}xJ-1,1[)u({1)xj- 1,1) (1.7)

r4. -[0,11 × {1} (1.8)

r- = , × {-1} (1.9)
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V = W, -,o,2(0) {V w" 2 +'(n);vIro = 0} (1.10)

Vd=[cos --sin] 10 91 _I.11

sin0 cos0 1d +--+ 0 (1.1)

To make the algebra as simple as possible, we worked with the monomials pi as
basis in L 2(-1, 1).

This problem corresponds not only to finding a minimizer in V for the energy in
anti-plane shear in finite elasticity, [9] and 1101 but also to the torsion problem for a
bar, see [11] and (131; then U denotes the Prandtl stress function. See 161. It is also
obtained from Maxwell's equations for the magnetic vector potential related to the
magnetic flux density B when the magnetic permeability depends on 1,1

2.

2. Dimensional Reduction

We define the dimensionally reduced solution of order N to be the solution UN in
VN C V for which

Vv E 17N C V, AUN(V) = G(v) (2.1)

given Vp, a subspace in V of the form

VN = {v C V : v(O,p) = E,0(0)1j(p)) (2.2)

The family of subspaces {VN})=O is characterized by the choice of {bj)}=0 called the
basis or Ansatz functions.

In [61 these basis functions were selected to yield the optimal rate of convergence
of IJu - UN]JHI as d 0 0. We thus had to select Oj to be a polynomial of degree 2j.
For F in (1.1) depending on p in a more general way, 161 indicated that the same
procedure would yield Oj to be a nonpolynomial solution of a second order Sturm
Liouville problem. (See also [Remark 3.9][7].)

Let us determine the basis functions. Setting u = 'j%0 uO')d' in the PDE for a
circular arch:

cu [I + pd]2up, + 1[1 + pdlu,, + ues = 0

yields a formal asymptotic expansion defined recursively by

U',+2) + (2p0+1) + u4,+ 1)} + {p2 t') +pU') + U)} = 0

with u(k) = 0 for k < 0; the corresponding BC are u('+') = 06,0 at p = ±1. Carrying
this proces out, one obtains that u(j) can be written as a polynomial in p of degree
j with coefficients that are functions of 0 determined intrinsically in the proces. The
solution to the Galerkin equations is determined by the span of the basis functions,
which then is the polynomials up to degree N. Using the techniques in 161 it is possible
to prove convergence as d . 0. Let U- be the Nth partial sum in the formal asymptotic
expansion as given above, e.g. Let Dt be the operator defined by Diu = ' mapping
Dorm(D) = W11+2 2 (0, 1) n W01'," + 2 - L 2n+ 2 (0, 1). We get.

Theorem 2.1 Let n E Z+. Let u,U- E W 1"' be bounded there independently of d.
Let ,8 E Dom(D N). Then there exists CN independent of d such that

Iu - "NIIH, < CNidIN+I
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Regarding convergence of the formal asymptotic expansion for the linear case,
we showed in 171 that it is uniformly convergent if d is sufficiently small and P is

sufficiently smooth and compatible - it had to be more than analytic: 13(2k)(O) =

0(2k)(1) = 0, Vk E N and 3M > 0 such that Vi E N: 110(')11o < M' - very restrictive
conditions. For the partial sum up to index N to exist, one needs the boundary
conditions above for k < N.

Since, for a given practical problem, we cannot depend on d being sufficiently
small to ensure that a given tolerance criterion can be satisfied via Theorems 2.1, we
have considered in 161 to increase N. Again, optimal rates in this scenario (d fixed,
N increasing) were established in [61. From the computational experience in 16] and
elsewhere, it became clear that it was unnecessary (read: wasteful) to increase N
uniformly everywhere in 10,1]. Rather, there were clearly defined layers (near the
boundary and/or rough spots in the load). We propose to increase N near these
layers only as our extension procedure.

Let I = (0,1) = U,=1I,, and Iil j = 0,i j Vi,j E 1,ml. Let M = (N)!n1 be an
m-vector of nonnegative integers (N = no. of basis functions used in I,). Consider

V = (v: v(O,p) = E ov1 (O)Vpb(p) such that (2.3)

N = I110o, v,(0) = 0 for 0 E Uj>N,I,}

a subspace of VN. Solving

Vv E Vx C VN, AuiV (v) = G(v) (2.4)

for u E V is the generalized dimensionally reduced Galerkin problem.
A key ingredient in the selection of the distribution of orders ./ - the local a

posteriori estimators which will identify the aforementioned layers - will be developed
in the following section.

3. A Posteriori Error Estimators

Define the estimator for (0,1) and order MI as

Est(.W) = 1 e ILen) (3.1)

where e E H(10)(11) is the solution of

VvEH11 0 (f): f [Ie I ddO dp =G(v) - Au(v) (3.2)
-10 dap dap

the right hand side being the residual (Au - Aum)(v). Although e is not well defined,
a' and Et(34A) are, provided the following solvability condition is satisfied

Vc E H'(0,1): / (0)2c(O)d dO = (3.3)

I f F(I VdU, 1 2)--UN-c'(0) ddOdp

01 ae
However, this is satisfied (even for c E W1.2 + 2 ) if

1 E apan({j);V=0 ) (3.4)
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cf. (2.1) and (2.2). This condition is met for any choice of basis functions with
optimal rates, see 161.

Similarly define the local error estimator

Est,(.) = I _ (-d- ) ddOdpjl ,1 < i < m (3.5)

As in [2] we define upper (lower) error estimator to mean

IIu - u11H, < (>)Est

Theorem 3.1 Let u and uW be the exact and dimensionally reduced solutions (see
(1.3) and (2.4)). Then Est as defined in (8.1) is an upper estimator, i.e.

Ilu - uv [i' < Est(A)

In the language of [3], Est is a guaranteed U-estimator (G-estimator). Also Est is
asymptotically exact in the linear case (and under some restrictions in the nonlinear
one), i.e. Est/[u - uw [[H' tends to 1 as d tends to zero for 3 sufficiently smooth. For
the nonlinear case, d not small one gets a bound like Est(A') .< C(d)lju - uwY [[H.

Other estimators are of course possible. A whole class of estimators can be intro-
duced from this residual based approach as indicated in [21].

The localization of the error estimator Est as defined in (3.5) can be founded on
exponential decay of the solution away from "vertical" boundaries and/or rough spots
in the load as defined in (1.5). The generalized Galerkin problem (2.4) transforms
to a system of 0. D. E.s whose solution can be bracketed by solutions to two linear
ones. These two obey a "St. Venant principle", i.e. decay exponentially away from
a concentrated load. See {8[. In fact, for any two optimal bases - spanning the
polynomials up to degree N in our case - the exponential decay rates are the same.
For example - when the problem is symmetric in p -, if VN = span({1,p 2 }), the
two first decay rates (eigenvalues) are r.0' = 0 (corresponding to eigenfunction 1) and
K = 15, the latter approximating well the eigenvalue of the full problem A, = ir2 with
respect to exponential decay. In contrast, if one omits 1 as the first basis function
(nonoptimal), i0.= 0 = .1. For N > 2, the approximation of A can not get any
worse. For N = 3, we already get r.3 = 9.9412 - 9.8696 - 12.

It is possible for each N to diagonalize the system of O.D.E.s in the linear case
and even tabulate in advance. However this is not possible to do uniformly for all
N and loses importance for the nonlinear case. Since we consider it important to
proceed hierarchically, we instead aim at small bandwidth. We therefore choose
the basisfunctions as integrals of Legendre polynomials. If the partial sum in the
asymptotic series U1N exists (/0 E Dom(D") and sufficiently small) and one chooses as
the basis the ones from the asymptotic expansion (special combinations of monomials
up to degree j - depending on P), one needs only compute the very last coefficient
cN but it is not practical to require this set of circumstances.

4. Adaptivity and Computational Aspects

We now wish to define our feedback extension procedure which under further re-
strictions turn out to be adaptive, i.e. optimal with respect to convergence rate as
N --, oo. This is the precise sense of "adaptive" due to Babuika and Rheinboldt 1171.

We first introduce the heuristic principle which will guide us to an efficient exten-
sion procedure based on the local a posteriori error estimators.
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Heuristic 4.1 Let the error associated with the generalized dimensional reduction be
estimated by

(E- I Est? (Ni)) "2

and the cost (work) be estimated by

j= IV (Ni, 1)

Then we aim at achieving

Est,(N) - Est,(N, - 1)oc V (Ni,Ij) - I(Ni - 1,I,)

by increasing Ni by a factor -1 > 1 where the error-cost quotient is maximal.

Reasoning: Minimizing the error at fixed cost with respect to N,, yields via La-
grange's multiplier and a backwards difference approximation the proportionality
aimed at in the Heuristic. ////

A typical choice for workestimate is

V (N,,I,) = (atN, + 1) " lIi1 (4.1)

for some choice of positive a,, i=1,2.
An easy computation shows that adding one to the relevant Ni will cost one order

of N more than the computation of uy itself and that if one multiplies by -Y, Est can
be computed at about the same cost as u.j.

Remark 4.2 Increasing Ni by factor -y > 1 where necessary is sufficient to obtain
a cost of computing Est at the same order of magnitude or less of computing uk,
however it is not sufficient to increase Ni by adding 1.

Introduce the convergence rate function -t for any given positive integer N:

4(N) = inf inf Iu - VI1H1
IIAt1.=N vEVt

We can now state the following theorem about adaptivity w.r.t. convergence rate:

Theorem 4.3 Let u and uy be the exact and dimensionally reduced solutions and
have gradients bounded uniformly in d. Let u E IV(l,r) 2 Then

(0,P)

IIu - uyj ___ Ct(N)

The anisotropic Sobolev space ^ (I r)2 was introduced in [61 and the superpair in-
dicates up to what order generalized partial derivatives (with respect to the corre-
sponding variable in the subpair) are L2 integrable.

It is possible to extend this result to the case where m --+ o as N -- oo. We
here envision computing Est(9), VO E I and based on this decide whether a bisection
and an increase of N in a half interval is beneficial (this is possible using obvious
modifications to Heuristic 4.1).

From an implementational point of view, the nice mathematical properties of Est
established in the previous section will not suffice, since finding e as a solution of a
second order O.D.E. might be too costly. It is possible to find formulae that can be
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used to compute e and Est in practice using that e has to be polynomial in p which
is orthogonal to VN in the f 1 fJ upvp d dOdp inner product. Let N = 0, e.g. Then

Est2 (O) = 22d3
3

Note that we selected the monomials as basis merely to be able to formulate Au(v)
easily; a change of basis within the same span requires a linear transformation only
in order to modify the formulae for the new choice of basis functions.

We next describe briefly our computational experience with the estimator above
for the case of a rectangular cross section and a nonlinearly elastic, brittle material.
Results for the linear and nonlinear arch will be reported elsewhere. We complement
the experiments in 121], where a constant load was treated in the linear case and the
viability of a similar estimator was established even for such noncompatible loads.
We solve the Galerkin system of ODE's (recast into first order standard form) using
the program NLTPBVP developed at Univ. of Maryland, College Park by V. Majer
and I. Babu~ka, see 1141 and [1]. We describe the performance in the case of smooth
compatible /3 and It < 0. The exact solution being unknown, we in stead use a
sufficiently high number of terms in the asymptotic series. We takef = Ar 2(1 +
3 2 7r2 cos 2 7rx) sin rx. In this case, the reduced solution is Co = Asin rx. Taking
N + 1 terms in the asymptotic expansion for purposes of computing the error for UN

is justifiable, since Ilu - UNIH I = IJuasy,N+1 - UNIIHi(1 + 0(d 2)). We used SMP, cf.
[19] to generate the terms and FORTRAN programs for these.

First, in Table 1 we see the results for varying d in the case N = 0: 8, the
effectivity index is the ratio between the estimated error and the (approximated)
true error measured in H'. The estimator is within 20 % for domains twice as thick

d = 10 - i /2 for i = A Relative error 0
0 .1414 1.273 .8109
1 .1414 .3461 1.0232
2 .1414 6.635E-02 1.0550
3 .1414 1.223E-02 1.0583

4 .1414 2.203E-03 1.0587
5 .1414 3.935E-04 1.0587
6 .1414 7.006E-05 1.0587

Table 1: Effictivity indices for N = 0.

as long and within 6% when the domain is roughly as thick as long. Est is not
asymptotically exact for this nonlinear problem. This overestimation is but 6%. The
results for N = 1 yield 0 values ranging from about .44 at d = 1. to 1.06 at d = 10- 2

and smaller. The efficiency of Est will deteriorate if one moves in any of the following
two directions: 1) towards larger values of 1 or d and/or 2) towards less smooth, less
compatible boundary load /P. In the former case, the examples computed so far
indicate an acceptable performance for all practical values. In the latter case, the
localization effect that we will describe later will be of importance, as then Est will
be able to recover as one refines (introduces new subintervals in which we can change
the orders of the model separately) near a singularity.
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In conclusion, the energyasymptotic method for dimensional reduction lends itself

well to adaptivity, not only in the sense that the Galerkin system of ODE's is solved
using an adaptive ODE solver but also in the sense that it is possible and desir-

able to carry varying orders of models in differing parts of the underlying domain.
Reliable, computable a posteriori error estimators were constructed. The general ap-
proach need not be conceptually confined to the class of problems treated here. Our
computations suggest a practical confirmation and viability of many of the features

described here of this method.
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